Infrared Spectroscopy is the analysis of infrared light interacting with a molecule. This can be analyzed in three ways by measuring absorption, emission and reflection. The main use of this technique is in organic and inorganic chemistry. It is used by chemists to determine functional groups in molecules. IR Spectroscopy measures the vibrations of atoms, and based on this it is possible to determine the functional groups.5 Generally, stronger bonds and light atoms will vibrate at a high stretching frequency (wavenumber).
Topic hierarchy
How an FTIR Spectrometer Operates
FTIR spectrometers (Fourier Transform Infrared Spectrometer) are widely used in organic synthesis, polymer science, petrochemical engineering, pharmaceutical industry and food analysis. In addition, since FTIR spectrometers can be hyphenated to chromatography, the mechanism of chemical reactions and the detection of unstable substances can be investigated with such instruments.
Identifying the Presence of Particular Groups
This page explains how to use an infra-red spectrum to identify the presence of a few simple bonds in organic compounds.
Infrared: Application
Infrared spectroscopy, an analytical technique that takes advantage of the vibrational transitions of a molecule, has been of great significance to scientific researchers in many fields such as protein characterization, nanoscale semiconductor analysis and space exploration.
Infrared: Interpretation
Infrared spectroscopy is the study of the interaction of infrared light with matter. The fundamental measurement obtained in infrared spectroscopy is an infrared spectrum, which is a plot of measured infrared intensity versus wavelength (or frequency) of light.
Infrared: Theory
Infrared (IR) spectroscopy is one of the most common and widely used spectroscopic techniques employed mainly by inorganic and organic chemists due to its usefulness in determining structures of compounds and identifying them. Chemical compounds have different chemical properties due to the presence of different functional groups.
Interpreting Infrared Spectra
The wavelengths found in infrared radiation are a little longer than those found in visible light. IR spectroscopy is useful for finding out what kinds of bonds are present in a molecule, and knowing what kinds of bonds are present is a good start towards knowing what the structure could be.
Topic hierarchy
How an FTIR Spectrometer Operates
FTIR spectrometers (Fourier Transform Infrared Spectrometer) are widely used in organic synthesis, polymer science, petrochemical engineering, pharmaceutical industry and food analysis. In addition, since FTIR spectrometers can be hyphenated to chromatography, the mechanism of chemical reactions and the detection of unstable substances can be investigated with such instruments.
Identifying the Presence of Particular Groups
This page explains how to use an infra-red spectrum to identify the presence of a few simple bonds in organic compounds.
Infrared: Application
Infrared spectroscopy, an analytical technique that takes advantage of the vibrational transitions of a molecule, has been of great significance to scientific researchers in many fields such as protein characterization, nanoscale semiconductor analysis and space exploration.
Infrared: Interpretation
Infrared spectroscopy is the study of the interaction of infrared light with matter. The fundamental measurement obtained in infrared spectroscopy is an infrared spectrum, which is a plot of measured infrared intensity versus wavelength (or frequency) of light.
Infrared: Theory
Infrared (IR) spectroscopy is one of the most common and widely used spectroscopic techniques employed mainly by inorganic and organic chemists due to its usefulness in determining structures of compounds and identifying them. Chemical compounds have different chemical properties due to the presence of different functional groups.
Interpreting Infrared Spectra
The wavelengths found in infrared radiation are a little longer than those found in visible light. IR spectroscopy is useful for finding out what kinds of bonds are present in a molecule, and knowing what kinds of bonds are present is a good start towards knowing what the structure could be.